Measurement of unidirectional Pi to ATP flux in human visual cortex at 7 T by using in vivo 31P magnetic resonance spectroscopy.

نویسندگان

  • Hao Lei
  • Kamil Ugurbil
  • Wei Chen
چکیده

Taking advantage of the high NMR detection sensitivity and the large chemical shift dispersion offered by ultra-high field strength of 7 T, the effect of magnetization transfer on inorganic phosphate (Pi) resonance during saturation of gamma-ATP resonance, mediated by the ATP synthesis reaction, was observed noninvasively in the human primary visual cortex by using in vivo 31P magnetic resonance spectroscopy. The unidirectional flux from Pi to ATP was measured by using progressive saturation transfer experiments. The cerebral ATP synthesis rate in the human primary visual cortex measured by 31P magnetic resonance spectroscopy in this study was 12.1 +/- 2.8 micromol ATP/g per min, which agreed well with the value that was calculated indirectly from the cerebral metabolic rate of glucose consumption reported previously.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Insulin protects against hepatic bioenergetic deterioration induced by cancer cachexia: an in vivo 31P magnetic resonance spectroscopy study.

The bioenergetic effects of cancer cachexia on the livers of male Fischer rats inoculated with a methylcholanthrene-induced sarcoma were assessed using serial in vivo 31P magnetic resonance spectroscopy. Rats were randomized into three groups: tumor-bearing controls (n = 7); an insulin-treated group receiving 2 units/100 g body weight/day starting 21 days after implantation (n = 8); and a chron...

متن کامل

Measurement of changes in high-energy phosphates in the cardiac cycle using gated 31P nuclear magnetic renonance.

Levels of the high-energy phosphate-containing compounds, ATP and creatine phosphate, and of inorganic phosphate (Pi) were measured as a function of position in the cardiac cycle. Measurements were made on isolated, perfused, working rat hearts through the use of gated 31P nuclear magnetic resonance spectroscopy. Levels of ATP and creatine phosphate were found to vary during the cardiac cycle a...

متن کامل

31P-Magnetization Transfer Magnetic Resonance Spectroscopy Measurements of In Vivo Metabolism

Magnetic resonance spectroscopy offers a broad range of noninvasive analytical methods for investigating metabolism in vivo. Of these, the magnetization-transfer (MT) techniques permit the estimation of the unidirectional fluxes associated with metabolic exchange reactions. Phosphorus (³¹P) MT measurements can be used to examine the bioenergetic reactions of the creatine-kinase system and the A...

متن کامل

31P magnetization transfer magnetic resonance spectroscopy: Assessing the activation induced change in cerebral ATP metabolic rates at 3 T

PURPOSE In vivo 31 P magnetic resonance spectroscopy (MRS) magnetization transfer (MT) provides a direct measure of neuronal activity at the metabolic level. This work aims to use functional 31 P MRS-MT to investigate the change in cerebral adenosine triphosphate (ATP) metabolic rates in healthy adults upon repeated visual stimuli. METHODS A magnetization saturation transfer sequence with nar...

متن کامل

Application of magnetic resonance spectroscopy for evaluating metabolic alteration in anterior cingulate cortex in Alzheimer's disease

Introduction: Alzheimer’s disease (AD) is the most common cause of dementia worldwide. Mild cognitive impairment (MCI) is often the prodromal stage to AD. Most patients with MCI harbor the pathologic changes of AD and demonstrate transition to AD at a rate of 10–15% per year. Accumulating evidence indicates that the asymmetry changes of left and right brain have happened in the early stage of A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 100 24  شماره 

صفحات  -

تاریخ انتشار 2003